- Rubidium nitrate; RbNO3; [13126-12-0]
- (2) Rubidium chlorate; RbC103; [13446-71-4]
- (3) Water; H₂0; [7732-18-5]

ORIGINAL MEASUREMENTS:

Shklovskaya, R.M.; Arkhipov, S.M.; Kuzina, V.A.; Tsibulevskaya, T.A.

Zh. Neorg. Khim. <u>1976</u>, 21, 2868-70; Russ. J. Inorg. Chem. (Engl. Transl.) <u>1976</u>, *21*, 1583-4.

VARIABLES:

T/K = 298.2

Composition

PREPARED BY:

Hiroshi Miyamoto

Rubidium mass %	Chlorate mol % (compiler)	Rubidium mass %	Nitrate mol % (compiler)	RbN0 ₃ /RbCl0 ₃ distrib coeff	Nature of the solid phase ^a
6.21 ^b	0.701	-	-	-	A
5.44	0.629	3.33	0.441	0.008	С
5.05	0.600	6.58	0.896	0.008	**
4.63	0.555	7.92	1.088	0.009	"
3.94	0.479	9.91	1.379	0.008	tt
3.88	0.476	11.04	1.553	0.008	•\1
3.84	0.485	13.78	1.993	0.007	tt
3.75	0.482	15.63	2.302	0.008	**
3.45	0.452	17.62	2.643	0.009	11
3.33	0.449	20.36	3.142	0.008	71
3.01	0.419	23.66	3.776	0.008	**
2.85	0.414	27.36	4.551	0.008	**
2.79	0.420	30.46	5.258	0.008	11
2.55	0.409	35.50	6.516	0.009	"
2.57	0.431	38.82	7.453	_	D
2.57	0.431	38.82	7.453	-	**
1.76	0.293	39.19	7.477	-	В
_	-	40.21	7.592	_	**

 $B = RbNO_3;$ C = solid solution based on RbClO3;

AUXILIARY INFORMATION

COMMENTS AND/OR ADDITIONAL DATA:

The distribution coefficients of rubidium nitrate in the chlorate in the range of crystallization of the solid solution were calculated from the equation

$$D_{RbN0_3/RbC10_3} = (x_1/y_1) (1 - y_1/(1-x_1))$$

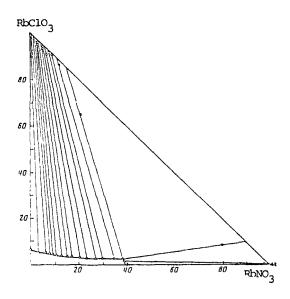
where x_1 is the mole fraction of rubidium nitrate in the solid phase, and y_1 the mole fraction of this component in the liquid phase. The results are given in the above table.

continued...

D = solid solution based on $RbC10_3 + RbN0_3$

For the binary system the compiler computes the following: soly of RbClO₃ = mol kg^{-1}

- (1) Rubidium nitrate; RbNO3; [13126-12-0]
- (2) Rubidium chlorate; RbC103; [13446-71-4]
- (3) Water; H₂0; [7732-18-5]


ORIGINAL MEASUREMENTS:

Shklovskaya, R.M.; Arkhipov, S.M.; Kuzina, V.A.; Tsibulevskaya, T.A.

Zh. Neorg. Khím. 1976, 21, 2868-70; Russ. J. Inorg. Chem. (Engl. Transl.) 1976, 21, 1583-4.

COMMENTS AND/OR ADDITIONAL DATA: (Continued)

The phase diagram is given below (based on mass % units).

AUXILIARY INFORMATION

METHOD/APPARATUS/PROCEDURE:

Isothermal method. Equilibrium was reached in 20-30 days. Total anion concentration in the liquid phase detd by ion exchange, and chlorate detd by argentometric titrn after reduction to chloride. Nitrate was detd by difference.

Specimens of the solid phase were analyzed for chlorate as described above, and for nitrate by reduction to ammonia using Devarda's alloy, volatilization, and colorimetric determination using Nessler's reagent Solid phase compositions detd by the method of residues, and confirmed from X-ray diffraction patterns.

SOURCE AND PURITY OF MATERIALS:

Highly pure grade $RbNO_3$ and $RbClO_3$ were used.

No other information given.

ESTIMATED ERROR:

Soly: nothing specified. Temp: precision \pm 0.1 K.

REFERENCES:

- (1) Rubidium chloride; RbC1; [7791-11-9]
- (2) Rubidium chlorate; RbClO₃; [13446-71-4]
- (3) Water; H₂0; [7732-18-5]

ORIGINAL MEASUREMENTS:

Arkhipov, S.M.; Kashina, N.I.; Revezina, T.V.

Zh. Neorg. Khim. 1968, 13, 587-8; Russ. J. Inorg. Chem. (Engl. Transl.) 1968, 13, 304.

VARIABLES:

Composition

T/K = 273, 298, 323

PREPARED BY:

Hiroshi Miyamoto

EXPERIMENTAL	VALUES:	Composition o	f saturated	solutions	
		C103	F	RbC1	Nature of the
t/°C	mass %	mol % (compiler)	mass %	mol % (compiler)	solid phase ^a
0	2.12 ^b	0.230	0.0	0.0	Α
	1.41	0.155	1.95	0.299	11
	0.37	0.051	26.52	5.125	**
	0.29	0.048	42.12	9.821	11
	0.27	0.046	43.16	10.20	A+B
	0.28	0.047	43.11	10.18	11
	0.00	0.000	43.48	10.28	В
25	6.24 ^b	0.705	0.0	0.0	A
	5.76	0.651	0.66	0.10	11
	5.36	0.608	1.40	0.222	**
	4.99	0.568	2.18	0.347	***
	4.63	0.529	3.00	0.479	11
	3.83	0.443	5.25	0.849	**
	3.27	0.385	7.70	1.27	***
	2.60	0.316	11.58	1.964	11
	1.91	0.247	18.43	3.324	11
	1.13	0.172	33.90	7.201	II
	0.83	0.15	48.18	12.32	A+B
	0.82	0.15	48.22	12.34	11
	0.34	0.062	48.50	12.37	В
	0.0	0.0	48.60	12.35	11
				conti	inued

AUXILIARY INFORMATION

METHOD/APPARATUS/PROCEDURE:

The isothermal method was used. At 0°C, glass vessels with an oil seal were immersed in melting ice. At 25 and 50°C, test tubes were mounted in a thermostat with a special device for mixing. The test tubes were rotated at 60 rev min⁻¹, and equilibrium was reached in 10 hours.

The liquid and solid phases were analyzed for ClO₃⁻ by adding an excess of FeSO₄ and back-titrating with potassium permanganate. The chloride content was determined by titration with silver nitrate solution with potassium chromate indicator.

The composition of the solid phases was found by Schreinemakers' method of residues.

SOURCE AND PURITY OF MATERIALS:

Rubidium chlorate and chloride used had a purity of 99.9 %.

ESTIMATED ERROR:

Nothing specified.

REFERENCES:

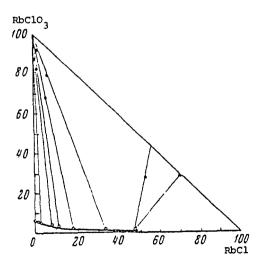
- (1) Rubidium chloride; RbC1; [7791-11-9]
- (2) Rubidium chlorate; RbClO₃; [13446-71-4]
- (3) Water; H₂0; [7732-18-5]

ORIGINAL MEASUREMENTS:

Arkhipov, S.M.; Kashina, N.I.; Revezina, T.V.

Zh. Neorg. Khim. 1968, 13, 587-8; Russ. J. Inorg. Chem. (Engl. Transl.) 1968, 13, 304.

EXPERIMENTAL VALUES: (Continued)


Composition of saturated solutions

	RbC10 ₃		RbC1		Nature of the
t/°C	mass %	mo1 % (compiler)	mass %	mo1 % (compiler)	solid phase ^a
50	13.74 ^b 12.21 5.22	1.670 1.506 0.734	0.0 3.1 22.92	0.0 0.53 4.503	A "
	1.98 1.99	0.387 0.390	51.35 51.40	14.03 14.06	A+B
	0.0	0.0	52.30	14.04	В

^a $A = RbC10_3$; B = RbC1

COMMENTS AND/OR ADDITIONAL DATA:

The phase diagram for 25°C is given below (based on mass units).

 $^{^{\}mbox{\scriptsize b}}$ For the binary system the compiler computes the following: